BAHÇE MESAFELERİ

BAHÇE MESAFELERİ

Bahçe mesafeleri planlı alanlar tip imar yönetmeliğinin 18. Maddesinde belirtilmiştir. Ancak burada dikkat edilmesi gereken kısım bahçe mesafeleri yönetmeliğin üçüncü bölümünde”arsa ve yapılar ile ilgili hükümlerde yer almasından dolayı imar planları öncelikli olup planlarda hüküm bulunmaması veya planda bahçe mesafeleri ile ilgili herhangi bir boşluk bulunması durumunda uygulanmalıdır.

Binalarda;

  • Ön bahçe ve yol kenarına rastlayan bahçe mesafeleri en az (5.00) m. dir.
  • Yan bahçe mesafesi en az 3.00 m.dir.
  • Arka bahçe mesafesi 28 inci maddedeki istisnalar hariç en az (3.00) m.dir.
  1. madde arka bahçe mesafesi için istisna olup 28. Maddede belirtilen formül;

I = L -(K + H/2 ).

I = Bina derinliği

L = Parsel derinliği

K = Ön bahçe mesafesi

H = Bina yüksekliğini ifade etmektedir.

Yapılan hesaplamalar sonucunda bina derinliği 7.00 metreden az çıkması durumunda arka bahçe mesafesinin 2.00 metreye adar düşürülebileceği ifade edilmektedir. Ancak bina derinliğinin 7 metreden az çıkması o parsel üzerinde yer alan bina için ruhsat düzenlenmesine engel teşkil etmemektedir.

  • Yan ve arka bahçe mesafeleri; tabii veya tesviye edilmiş zeminin üzerinde kalan bodrum katları da dahil, 4’ten fazla katlı binalarda 4 katın üzerindeki her kat için (0.50) m. artırılır.

bahçe mesafesi

  • Eğer bina yüksekliği 60.50 metreden fazla ise bina parselin hiçbir sınırına 15.00 metreden daha fazla yaklaşamaz ve 60.50 metrenin üzerindeki her kat için 0.50 mtre bahçe mesafelerine eklenir.
  • Bir parselde az katlı ana bir kitle üzerinde birden fazla yükselen bloklar tertiplenmesi halinde, bloklar arasında en az yapının ana kitlesi üzerinde kalan bölümlerinin yüksekliklerine göre bu Yönetmelikte belirlenen iki bina arasındaki yan bahçelerin toplamı kadar mesafe bırakılmak zorundadır.

bahçe mesafesi2

 

ARSA ALIRKEN DİKKAT EDİLECEK HUSUSLAR

ARSA ALIRKEN DİKKAT EDİLECEK HUSUSLAR

 

Ülkemizde arazi veya arsalar kullanma amacından daha çok yatırım aracı olarak görülmekte ve bu amaç doğrultusunda işlem görmektedir. Yatarım amacı olarak kullanılmasından dolayı sürekli el değiştirmekte ve büyük yatırımlar yapılmaktadır. Peki arazi alırken nelere dikkat etmek gerekir? Kısaca bundan bahsedecek olursak;

 

  • Almayı planladığımız gayrimenkul eğer arsa ise öncelikle yapılması gereken bağlı bulunduğu belediyenin ilgili müdürlüğünden (İmar müdürlüğü) arsanın imar durumu hakkında detaylı bilgi alınmalıdır.  Size beyan edilen ile arsanın gerçek durumu hakkında herhangi bir fark bulunup bulunmadığı kontrol edilmelidir. Bu aşamada dikkat edilmesi gereken konu Belediyedeki görevli personelden alınan sözlü bilgi pek bir anlam ifade etmemektedir. Bu sebeple arsanın imar durum belgesini (imar çapını) almak ilerde yaşananabilecek büyük sorunlara engel olabilir.
  • İkinci olarak da tapu satışı yapılacak olan arsa ile yerinde tarafımıza gösterilen taşınmaz olduğundan emin olmak gerekir. Bunun için Kadastro Müdürlüğünden veya Haritacılık Bürolarından teknik destek alınabilir.
  • Üçüncü olarak ise satın almayı düşündüğümüz arsanın güncel tapu kayıtlarını mal sahibinden istememiz isabetli olacaktır. Zira satışın yapılacağı gün herhangi bir süpriz ile karşılaşmak istemeyiz. Tapu kayıtlarında taşınmaza ait herhangi bir kısıtlılık olup olmadığını görebiliriz. Ayrıca tağu kaydında yazan arsa alanı ile bize söylenen alan büyüklükleri karşılaştırılmalıdır.
  • Ayrıca satın aldığımız arsa hissesi değil tam hisse olduğundan emin olmak gerek zira hisseli demek arsanın hisse oranınca belirli bir kısmını satın almış olursunuz ve tek başınıza inşaat veya herhangi bir işlem yapamazsınız. (Tam hisse almış olmasız bile bazı durumlarda tek başına yapı yapmanız mümkün olmayabilir. Bu durum imar çapı/imar durum belgesinde belirtileceği için önceden haberdar olursunuz.)

 

Bütün bunlar hukuksal olarak arsanızın herhangi bir sıkıntısı olup olmadığını öğrenmeniz için bir kaç tavsiyedir. Bunun dışında internet de dahi bir çok satılık arsa bulunmaktadır. Bunlardan hangisinin daha karlı olduğu sorusuna cevap arayacak;

 

Öncelikle imar planlarında kentin gelişme bölgesinden arsa almak çoğu zaman daha cazip olacaktır. Çünkü daha düzenli yapılaşma ve sağlıklı altyapı olanağı olan yerlerdeki özellikle konut fiyatları daha yüksek olacağından haliyle arsa fiyatları da daha yüksek olacaktır.

 

Ayrıca seçim yapacağımız bölgede herhangi bir kamu yatırımı(park, okul, hastane vb.) yapılması planlanıyor ise bölgedeki fiyatların yatırımın hayata geçmesi ile yükseleceği öngörülebilir. Ayrıca kamu yatırımları kentin büyüme yönünü ve hızını etkileceğinden önemli bir etken olarak göze çarpar.

 

Ulaşım imkanı veya ulaşım olanakları gelişmiş olan veya gelişmesi beklenen bölgelerdeki fiyatlarda bu imkanlara paralel olarak artması beklenir. Seçim yaparken bunu da göz önünde bulundurmak gerekir.

 

Ayrıca üzerinde 6306 sayılı kanun kapsamında değerlendirilebilecek ekonomik ömrü tükenmiş “Riskli yapı” statüsüne alınması muhtemel olan binaların bulunması bütün resmi harç vb işlemlerden muaf olacağından dolayı arsa sahibine belirli faydalar sağlamaktadır.

Son olarak şunu belirtmekte fayda var.  Arazi ve arsa fiyatları arasında küçük mesafelerde büyük farklılıklar ortaya çıkabilmektedir. Eğer bu bölgelerdeki piyasa değerleri hakkında bilgi ve tecrübe sahibi değilsek profesyonel yardım almakta mantıklı olacaktır.

satılık arsa

 

Greenwich Millenium Village-District

Urban Precinct

 

Smaller areas of cities and new, mostly residential areas on the edge of city.

  • Business – Commercial Districts
  • “New-towns” –in-town
  • Campuses
  • Suburbs
  • Streets
  • .

Greenwich Millenium Village

Greenwich Peninsula is an area of South London, England.The first Millennium Village is an example scheme in the creation of sustainable new communities. The Village, which is located on the eastern side of Greenwich Peninsula, is being developed by Greenwich Millennium Village Limited. The Village is an ambitious mixed-use development with high levels of design innovation and energy efficiency.

Greenwich Peninsula

Greenwich Peninsula

Architects 1997 – 1999: Ralph Erskine Architect and Planner in collaboration with SSARK, Ahlqvist & co and HTA
Architects 2000 – : Erskine Toavatt, later Toavatt Architects and Planners
No. of units: 2.520
No. of parking: 1.500
Commercial and retail: 5000 sqm
Site area: 30 hectare
Building costs: £300.000.000

greenwich 2

Master Plan

The Masterplan was created by Ralph Erskine.Erskine’s vision for the Village is to create a vibrant new community that works for people and where the pedestrian has priority over the car. In urban design terms, the Village reintroduces the London square to create streets and public spaces that are human, lively, intimate and secure. The Village itself is built around and overlooks an Ecology Park, created by English Partnerships, now the Homes & Communities Agency.

greenwich masterplan

greenwich masterplan

The plan for the peninsula also includes 50 acres (20 hectares) of parkland, an ecology park, a commercial area, housing, and the opening of ultra-modern transport links to central London.

The plan for the peninsula

The plan for the peninsula 2

  • The Greenwich Millennium Village Materplan on the Greenwich Peninsula presented many key principles to create a mixed sustainable community together with an ecology park.
  • The Greenwich Millenium Village model for a walkable mixed use development thinking as a pioneeting example of enviromental

Greenwich Millenium Village Site Plan

Project data
Client: GMVL
Architects: Broadway Malyan
Completion: 2013
Value: £280m

GMV covers 72 acres of the 300 acre peninsula and is grouped into smaller communities arranged around the Southern Park with its village green, ecology park and newly created lake. Green corridors connect the Village to the River Thames and the rest of Greenwich Peninsula.

Greenwich Peninsula.

At the moment there are 1,095 homes, together with a number of shops and commercial units. When the development is completed it is expected that there will be an additional 1,800 homes alongside commercial space and community facilities.

A generous water-feature fronts the apartments.

A generous water-feature fronts the apartments.

The mixed-tenure community includes a social and community facilities, including a school and health centre, restaurants, workshops, and a new eco park, as well as other open spaces.

greenwich3

 

  • Greenwich Millennium Village is setting new standards for environmentally sustainable development. Over the lifetime of the project, the aim is to achieve:
  • 80% reduction in primary energy consumption
  • 50% reduction in embodied energy
  • 50% reduction in construction waste
  • 30% reduction in water use
  • 30% reduction in construction costs
  • 25% reduction in project duration (construction time)
  • GMV has won over thirty awards including, the Evening Standard New Homes Award (highly commended), the Brick Award for decorative brickwork, the Civic Trust Award and the CABE Building for Life Gold Award.
  • Greenwich Millennium Village is being built using advanced technology and adhering to current best practice in the construction industry.
  • The UK’s first EcoHomes rating of ‘excellent’, due to its use of energy saving measures, resulting in lower bills for residents. The buildings are being made from materials that are environmentally sustainable. Recycled and locally produced materials are being used whenever possible. By maximising off-site prefabrication and by segregating and recycling materials significant reductions in construction waste are being made.

Conclusion

Greenwich Millenium Village has got neighbourhood and district features

  • A variety of dwelling types
  • A well-bounded area
  • Communal facilities at the core
  • Walking distance from the periphery to the core

Greenwich Millenium Village is a successful partnership formed with the London Borough of Greenwich.It has a positive impact on residents and has a high quality external design – elevations, street spaces and green spaces.So people can live  high quality live conditions in GMV

PUBLIC TRANSPORTATION (MASS TRANSIT) SYSTEMS

 PUBLIC TRANSPORTATION (MASS TRANSIT) SYSTEMS

Urban transportation is a widespread action that consists walking, bicycles, urban freeways, metro and regional rail systems. Transit systems can be classified basically in three categories.

  • Private Transportation:

Passengers are the owners and the operators of the vehicles.

Pedestrian, bicycle and private car are the common modes of this system.

  • Paratransit: (For-hire Transportation)

Paratransit system is provided by operators for individual or multiple trips.

Taxi, dial-a-bus and jitney or dolmuş are the samples of this system.

  • Mass Transit: (Urban Transit or Public Transportation)

Mass transit system, which is the most essential for transport planning, includes the modes operate on fixed routes and with fixed schedules.

Bus, light rail transit, metro, regional rail and several other systems are all the modes of mass transit system.

Mass transit systems can be categorized as follows according to the vehicle types.

Suburban Railroad

Suburban railroad service was started by the intercity railroads for commuters. It is also called commuter rail or regional rail.

This system is characterized by heavy equipment, high maximum speeds, and slow acceleration and deceleration. The routes are typically 25 to 50 miles long and lead to a stub-end terminal in the central business district. Most other stations are in the suburbs and are several miles apart. Usually ridership is highly concentrated in the peak periods. The service is often high quality. Trains run at speeds up to 80 miles per hour, and there are enough seats so every passenger gets one.

New York City has the largest system, carrying over 500,000 passenger trips each weekday (Black, 1995). Aliağa-Cumaovası rail route is a typical example to the suburban railroads.

Heavy Rail

The term rapid rail is also used, and in different countries. Heavy rail refers to traditional high platform subway and elevated rapid transit lines so it is also called as subway-elevated.

Principal characteristics are operation over rights of way that are completely segregated from other uses. Tracks are placed in subway tunnels, on elevated structures, or on fenced surface rights of way. The popular term, which is also used in Turkey, is Metro.

Metro trains consist anywhere from 2 to 12 cars. Each car has its own motors, and gets power from a third rail (or in some cases from overhead wire). Because of the danger of the electricity boarding is from high platforms, and tracks put at ground level. Stations are designed to allow large numbers of people to enter and leave rapidly. Planned rail vehicle economic life takes about 30 years. Some modernization and maintenance works are necessary during the product‘s life (Fleischer 2001).

Heavy rail systems are extremely expensive modes to build. Because of the need of tunnels, elevated structures, or other fully segregated rights of way and to accommodate more gentle curves and grades. Both costs and performance vary from location to location according to stop spacing, vehicle and system design, etc. However according to the World Bank Reports; the capital cost of a full metro system is between $30 and $180 million per kilometer (the most expensive is being fully automatic, fully underground systems). For example, a dedicated underground rail system cost $40 million per kilometer in Santiago, Chile, $64 million in Osaka, Japan, and $117 million in Caracas, Venezuela. The capital cost of İzmir Metro is $52 million per kilometer.

Figure 2 Hong Kong Metro

Figure 2 Hong Kong Metro

Figure 1 New York Metro

Figure 1 New York Metro

 

Light Rail

“Light rail transit is a metropolitan electric railway system characterized by its ability to operate single cars or short trains along exclusive rights-of-way at ground level, on aerial structures, in subways or, occasionally, in streets, and to board and discharge passengers at track or car-floor level.”(Transportation Research Board definition)

“An electric railway with a “light volume” traffic capacity compared to heavy rail. Light rail may use shared or exclusive rights-of-way, high or low platform loading and multi-car trains or single cars. It is also known as streetcar, trolley car or tramway” (APTA Glossary of Transit Terminology definition)

Light Rail is safer than heavy rail because the electricity comes from an overhead wire instead of a third rail. There is no need to fence the track, and it can operate in the street. It offers more flexibility of location than heavy rail. Where land is expensive, it can be put in a street and passengers can board and alight from the sidewalk.

Right-of-way acquisition and construction can be much cheaper than heavy rail. Therefore it is viable in situations with a lower level of demand than that need to justify costly heavy rail projects. If most of a route is on separate right-of-way, average speeds are higher than for buses in mixed traffic. The technology is well known and has been proved by experience.

Depending upon the specific system, the distance between light rail stations is shorter than within heavy rail systems. Trains may operate in mixed street traffic (urban areas), on dedicated rights of way, or in the middle of major thoroughfares, where trains cross intersections, in the same manner as other vehicles. Due to these factors, the average speed of light rail systems is significantly lower than heavy rail systems.

Well-planned and well-used light rail systems can move more people than can ordinary bus systems. Light rail systems also emit fewer pollutants, depending on the power source.

Light rail systems can carry 6,000 people per hour in mixed traffic and up to 36,000 people per hour with five- or six-car trains, exclusive rights-of-way, and grade-separated intersections. Light rail systems have certain drawbacks, including system inflexibility and expensive track maintenance. However, in the dense cities of Asia, light rail is becoming increasingly attractive and viable.

3 LRT in San Diego

Figure 3 LRT in San Diego

 LRT of Montpellier (France)

Figure 2. 4 LRT of Montpellier (France)

Bus Systems

 

            Bus vehicles vary according to their size, capacity and body type. Each type was of course built for certain needs. Main types are defined below;

Midibus is a 6-8 meters long vehicle, which has a capacity of 15-40 seats and standing spaces. It is used for lightly traveled lines, short shuttle lines, services in residential neighborhoods, etc.

Regular bus is 10-12 m long, 2.50 m wide. It has 30-50 seats and 60-20 standing spaces (minimum number of seats corresponds to the maximum number of standing spaces).

Double-decker buses have two decks, the upper being for seated passengers only. Like articulated buses, double-deckers have a greater capacity than regular buses, but take less street space. They involve passengers climbing stairs, which is inconvenient. Riding on the upper deck, however, offers nice views for passengers.

Articulated bus is a vehicle with the main body on two axles and an articulated section with the third axle. These buses are 16-18 m long and have a capacity approximately 50 percent greater than regular bus. With their greater capacity, articulated buses are suited for heavily traveled lines. In a few cities with very heavy ridership double-articulated buses, with three body sections and four axles, are used.

Figure 5 80-foot bi-articulated vehicles (36-40 additional seats)

In selecting buses for a specific service, expected passenger volume is critical. Maneuverability and riding comfort are also considered. Thus, for lightly traveled bus lines in suburban areas with many narrow residential streets, or on hilly terrain, minibus may be best suited because it is least expensive per vehicle-km, its small capacity is adequate and it can negotiate such alignments better than large buses. On the other hand, heavy passenger loads make regular or high-capacity buses more economical and superior in offering the required capacity. Average trip lengths influence the number and width of doors, as well as seating arrangement. Relatively short trips and intensive exchange of passengers at stops requires two double channel doors on regular, 3-4 double channel doors on articulated buses, and single rows of seats on each side.

Bus Travel Ways

 

Being in mixed traffic, and their speed and reliability of service depend on traffic conditions. Their average speed is lower than average speed of cars because they stop to pick up and drop off passengers. Buses are therefore not very competitive with car travel in the same corridor with respect to speed and reliability. Their advantage is much lower cost and convenience of not having to drive and park.

An effective way to increase bus ridership is to give buses priority in traffic. A dedicated bus lane (assuming high-occupancy rates and efficient operation) can move twice as many people per hour as buses operating in mixed traffic and 40 times as many people per hour as cars. By giving buses priority over car traffic, more people will turn to buses as a fast and efficient alternative.

To make buses more efficient and attractive to passengers, bus preferential measures can be introduced. These include the following:

Preferential signals: buses in a separate approach lane at intersections get the green signal before other lanes, so that they can proceed through the intersection ahead of other traffic.

Alternating stop locations at near- and far-side of intersections (before or after cross street) so that buses clearing one intersection on green signal use the green at the following intersection before they make the next stop. Also, spacings between bus stops should typically be about 250-400 m.

Exclusive bus lanes, which may be curb lanes or lanes in the median. This is the most significant improvement measure because it makes buses independent of traffic conditions on the same street.

Busway

Busways are special roadways reserved for buses only. As seen in the figure, Busway is located in the middle of the highway. This line can be used as HOV lane for the private cars at nights, or when there is no need for express buses.

 

Busway in Charlotte

Figure 6 Busway in Charlotte

Express bus service is used for long lines, usually with higher quality service than regular bus lines. Operated for commuter services or, sometimes, throughout the day, express bus service has one or more of the following characteristics:

  • Long stop spacings, resulting in higher travel speed;
  • Portions of the line use reserved bus or HOV lanes, or operate on freeways;
  • Offer higher comfort – usually seating for all passengers;
  • Have higher than regular fares.

Express bus services can be offered as a special service, such as peak hour commuter lines; or, they may be used as a higher quality/higher fare service paralleling regular bus lines, but more competitive with private car. Express bus often serves lines to airport or between center city and major regional activity centers.

Bus Semirapid Transit (BST) or Bus Rapid Transit (BRT)

 

On major urban corridors, which require faster, more reliable and higher capacity services than regular buses can offer, but there is no rail service, bus lines can be upgraded to offer higher level-of-service and higher capacity than regular bus lines. This type of service designated Bus Semirapid Transit (BST) or

The figure 7 points out that express bus lanes should be designed on the street where the commerce and housing has high density.

 

 Hypothetical cross section of Curitiba's trinary road system.

Figure 7 Hypothetical cross section of Curitiba’s trinary road system.

BST investments are considerably higher than regular buses involve because they require construction of special lanes or roadways, stations and other equipment. Their investments are lower than for LRT because they do not need electrification and tracks. BST performance and service, including speed, reliability and capacity, is also better than regular buses can offer. It does not match performance and level-of-service of LRT because rail vehicles are more spacious, more comfortable, have better performance and considerably lower noise due to electric traction.

Moreover, their permanent tracks, rights-of-way and stations also give rail systems a much stronger image. BST are obtained by provision of reserved lanes or roadways, preferential treatment at intersections, stops with multiple births (stopping locations) which allow overtaking and simultaneous boarding of several buses, fare collection prior to boarding and other elements which increase speed and reliability of service. To increase line capacity, articulated and, in some cases with mostly straight corridors, double-articulated buses are used.

Many European cities, including Zurich and Helsinki, Finland, have designed systems that give priority to buses and trolleys at intersections. One of the most effective bus systems is in Curitiba, Brazil, where the integration of guided land development and a public transportation network created conditions that naturally promote bus use.

Figure 8 Curitiba Busway

 

 

Busway systems are rather than a subway system because of its comparatively low cost and flexibility in serving low- to medium-density urban areas. In addition to exclusive bus lanes, the city is considering a bus tunnel in part of the city center and will promote the use of alternative fuels, including compressed natural gas and electricity, to help alleviate related emissions problems. The system has been designed so that it could be converted to rail transit if needed. (World Resources Institute, 2001)


Comparison of Modes

There have been many studies to make objective comparisons of rail and bus modes. One of them was the study ordered by President Kennedy to construct a busway on the Shirley Highway (Black, 1995). According to this research:

  • Driving an automobile all the way is cheapest with volumes up to 5,000 passengers per hour
  • Taking a bus all the way is generally cheapest when volumes are 10,000 per hour or higher
  • Rail with feeder busses or residential collection and with a downtown subway for distribution is cheapest with high population density and volumes of at least 40,000 persons per hour

Deen and James compared busway and rail alternatives in Atlanta. They found that rail is superior for any volume higher than 12,000 passengers. In 1973 Miller compared busway and rail alternatives for Los Angeles Rail was superior for any volume above 5000.

Several analyses claimed that the bus is best in all conditions. In 1969 Stover and Glennon advocated a freeway flyer system in which busses operate in mixed traffic on freeways. In 1973 Smith compared this scheme with a subway and found the bus option to be better in all respects (Black 1995).

Rapid rail transits, such as subways, often appear to be the ideal solution to clogged city streets. These rail systems promise high mobility, can be built under valuable urban land, and, they emit relatively few pollutants, so they are environmentally attractive alternatives. But, huge construction and operating costs damage the city budgets.

According to World Bank Report the capital cost of the modes below is as follows:

  • At grade busway systems formed by conversion of existing roadway (including vehicles) cost between $1-5 million per route-kilometer,
  • Elevated busways may cost as much as $15 million per route-kilometer,
  • Light Rail Transit (LRT) between $10 and $30 million,


PASSENGER CAPACITY OF URBAN TRANSPORTATION MODES

 

  • Capacity is usually measured by the maximum number of passengers that can be carried on a single track or lane in 1 hour.
  • It is important in determining whether a line can handle peak-hour demand.

 

 

#  OF PASSENGERS

CAPACITY:  ——————————

 

TIME (hour)

 

CAPACITY OF URBAN TRANSPORTATION MODES

(Single Lane or Track)

CAPACITY OF URBAN TRANSPORTATION MODES

 

Locations for observed values:

Automobiles on freeway: 1-70 in Kansas City, MO. This was the highest average volume per lane ever observed on an urban freeway

Bus: Contraflow lane on 1-495 in New Jersey, approaching Lincoln Tunnel.

Subway: Queens-53d Street IND tunnel in New York City.

Vukan Vuchic’s categorization of Transit Systems

Vuchic distinguishes the transit modes on three dimensions:

  • Technology,
  • Type of service,
  • Right of way,

Technology of transit systems refers to the mechanical features of their vehicles and travel ways. The four most important features are:

 

  • Support: rubber tires on roadways, steel wheels on rails, boats on water, etc.

 

  • Guidance: vehicles may be steered by the driver, or guided by the guideway; on rail, AGT and monorail systems drivers do not steer vehicles/trains, because they are mechanically guided.

 

  • Propulsion: most common in transit systems are internal combustion engine – ICE (diesel or gasoline) and electric motor, but some special systems use magnetic forces (linear induction motor – LIM), cable traction from a stationary motor, propeller or rotor, and others.

 

  • Control: the means of regulating travel of one or all vehicles in the system. The most important control is for longitudinal spacing of vehicles, which may be manual/visual by the driver, manual/signal by the driver assisted by signals, fully automatic with driver initiation and supervision, or without any driver at all.

 

Type of Service includes several classifications:

 

  • By types of routes and trips served: Short-haul, City transit and Regional transit.
  • By stopping schedule: Local, Accelerated (Skip-stop, Zonal) and Express service.
  • By time of operation and purpose: All-day, regular service, Peak-hour service or Commuter transit, and Special service for irregular events (public meetings, sport events, etc.).

 

Right-of-way (ROW) Category, or type of way on which transit vehicles operate, is the most important characteristic of transit modes. There are three ROW categories:

 

  • ROW Category C are public streets with general traffic.

 

  • ROW Category B represents transit ways that are partially separated from other traffic. Typically they are street medians with rail tracks, which are longitudinally separated, but cross street intersections at grade. Bus lanes physically separated from other traffic also represent ROW category B. This ROW requires a separate strip of land and certain investment for construction.
  • ROW Category A is fully separated physically protected ROW on which only transit vehicles operate. This category includes tunnels, aerial (elevated) structures or fully protected at-grade tracks or roadways. Thus, vertical position of the ROW is not as important as its separation from other traffic, because total independence of Transit units allows many physical and operational features that are not possible to use on ROW categories B and C. Therefore, the modes with ROW category A are guided (rail, exceptionally rubber-tired) systems with trains, electric traction and signal control which offer very high capacity, speed, reliability and safety.”(Vuchic, 2002)

 

Vuchic’s right of way categorization seems to be the best way for the transport planners in their decisions. This categorization points out the planners, to make their decision based on the capacity of the corridor.

The conceptual models for scheduling – Zamanlama planı konsept modeli

The conceptual models for scheduling 

Scheduling ( zamanlama planı ) ulaşım yönetiminin en önemli konularından birisidir. Çünkü Scheduling ulaşım sistemlerinin etkili yada başarılı olup olmamadığının bir göstergesidir.

Scheduling ( zamanlama planı) üçe ayrılır. Bunlardan ilki yolculuk zamanını hazırlamak, beklemek ve belirli noktalara belirli zamanlarda ulaşılmasını ayarlamaktır. Bir digeri ise ulaşım aracının yolculuğu bitirip bir diğerine başlarken verdiği aradır. Son  Scheduling ise ulaşım aracının günün hangi saati sevis vermeye başlayacağı ve hangi saati servisi bırakacağıdır.

Çogu Scheduling günün farklı zamanlarında farklılık gösterebilir örneğin; peak saatlerde metrolar daha uzun olabilir ulaşım talepleri daha fazla olduğu için extra vagonlar kullanılmaya başlanır.  Karayolu ulaşımında ise bu saatlerde sefer aralıkları sıklaştırılabilir tabi bunun için bu saatlerde kullanılabilecek otobüslere sahip olmak gerekir. Scheduling yeterli olup olmadığını anlamak için peak saatlerde bekleme sürelerindeki değişime bakılabilir.

Scheduling’da en zor olan kısımlardan biriside araçlara personel atamasıdır. Otobüs gibi araçlarda 1 kişi yeterli iken metro vb. Ulaşım araçların bu sayı çok daha fazla artabilir.

Karmaşık bir ulaşım sistemde problemleri anlamak ve analiz etmek için sistemin bütün bileşelerini, işlevlerini ve birbirleriyle etkileşimlerini anlamak gerekir. Eger bu ilişkiyi ve bileşenlerini anlamazsak matematiksel bir model geliştirmemiz mümkün olmayabilir ve konsept scheduling model bu ilişkiyi anlamamız açısından çok kullanışlı bir yöntemdir.

ROUTE OPTİMİZATİON

    ROUTE OPTİMİZATİON

Bus routing is one of the most important elements of public transit system planning. The bus route is optimized by minimizing the total system cost, including operator and user costs, while considering diagonal links in the study network.

Commuter bus routes are generally located on main thoroughfares of urban areas. However, considering realistic distributions of passenger travel demand over space and time, many route locations may not be cost-effective from either the operator or user standpoint. Therefore, relocating bus routes and redesigning headways may reduce operating costs as well as improve passenger accessibility. Both transit operators and passengers prefer short and fast routes to reduce the operating cost and travel time, respectively. However, passengers also prefer bus routes that can be easily accessed from their origins and destinations. To reduce access impedance, tortuous routes are often constructed. This, in turn, is likely to increase both the in-vehicle portion of user travel time as well as the bus operating cost. Transit operators are well aware of this trade-off when planning a new bus route or extending an existing service

ROUTE OPTİMİZATİON

In the past 30 years, many researchers have analyzed the problems of optimal transit service design with many-to-one travel patterns by using analytical methods (Byrne and Vuchic 1971; Chang and Schonfeld 1991; Hurdle 1973; Spasovic and Schonfeld 1993; Spasovic et al.1994; Wirasinghe et al. 1977). They dealt with selecting zones, route/line spacings, headways, and route lengths designed to carry people between distributed origins and a single destination (e.g., central business district [CBD], transfer station, etc.). By assuming demand homogeneity of the service area, the researchers optimized the characteristics of bus systems consisting of a set of parallel routes feeding a major transfer station of a trunk line or a single terminal point, such as the CBD ( Source: http://nctr.usf.edu)

A recent method for analyzing fixed-route bus systems is the out-of-direction (OOD) technique (Welch et al. 1991). This method improves the accessibility of a bus system by improving passenger accessibility along certain route segments. Chien and Schonfeld (1997) optimize a grid transit system in an urban area without oversimplifying the spatial and demand characteristics. They extended the model to jointly optimize the characteristics of a rail transit route and the associated feeder bus routes in an urban corridor (Chien and Schonfeld 1998)

The impact of the change in headway on user, operator, and total costs is also analyzed (Figure 2). Short headway resulting in high operator costs (due to large fleet size required) reduces user costs because of less waiting time. The optimal headway is reached in point B (14.2-minute headway), at which the minimum total cost is achieved, while the operator and user costs are $159/hour and $327/hour, respectively

COST HEADWAY

Figure 2

 

 

Figure 3 shows the relationship between demand and optimal headway. For various bus sizes, the optimal headway decreases as the demand increases. Analysis results show that regardless of the variation in demand or in the value of passenger time, the 35-passenger-per-bus vehicle size is the most preferable as it yields the minimum total cost. Figure 4 shows that even change of headway does not change the optimality of using smaller buses to serve the analyzed region. In addition, Figure 8 shows that the increase in value of passenger time results in an increase in user cost. Thus, the optimal headway decreases.

3

Figure 3

4

Figure 4

The model can be easily modified to account for changes of spatial (e.g., one-way street, roadway/lane closure, reversible lane) and temporal (e.g., incidents, special events) conditions. All these features enhance transit planners’ capability to redesign bus routes in areas that may experience significant shifts in residential density, as well as geographic or physical changes of the street network.

GREAT DEPRESSİON (1929)

GREAT DEPRESSİON (1929)

The Great Depression was an economic slump in North America, Europe, and other industrialized areas of the world that began in 1929 and lasted until about 1939. It was the longest and most severe depression ever experienced by the industrialized Western world.

GREAT DEPRESSİON UNEMPLOYED

The Great Depression began in the United States but quickly turned into a worldwide economic slump owing to the special and intimate relationships that had been forged between the United States and European economies after World War I. The Great Depression of 1929-33 was the most severe economic crisis of modern times. Millions of people lost their jobs, and many farmers and businesses were bankrupted. Industrialized nations and those supplying primary products (food and raw materials) were all affected in one way or another. In Germany the United States industrial output fell by about 50 per cent, and between 25 and 33 per cent of the industrial labour force was unemployed.

 

Background To Great Depression:

  • The 1920s witnessed an economic boom in the US (typified by Ford Motor cars, which made a car within the grasp of ordinary workers for the first time). Industrial output expanded very rapidly. Sales were often promoted through buying on credit. However, by early 1929, the steam had gone out of the economy and output was beginning to fall.
  • The stock market had boomed to record levels. Price to earning ratios were above historical averages.
  •  Agricultural sector had been in recession for many more years

Causes of Great Depression

Stock Market Crash of October 1929

During September and October a few firms posted disappointing results causing share prices to fall. On October 28th (Black Monday), the decline in prices turned into a crash has share prices fell 13%. Panic spread throughout the stock exchange as people sought to unload their shares. On Tuesday there was another collapse in prices known as ‘Black Tuesday’. Although shares recovered a little in 1930, confidence had evaporated and problems spread to the rest of the financial system. Share prices would fall even more in 1932 as the depression deepened. By 1932, The stock market fell 89% from its September 1929 peak. It was at a level not seen since the nineteenth century.

  • Falling share prices caused a collapse in confidence and consumer wealth. Spending fell and the decline in confidence precipitated a desire for savers to withdraw money from their banks.

Bank Failures

In the first 10 months of 1930 alone, 744 US banks went bankrupt and savers lost their savings. In a desperate bid to raise money, they also tried to call in their loans before people had time to repay them. As banks went bankrupt, it only increased the demand for other savers to withdraw money from banks. Long queues of people wanting to withdraw their savings was a common sight. The authorities appeared unable to stop bank runs and the collapse in confidence in the banking system. Many agree, that it was this failure of the banking system which was the most powerful cause of economic depression.

  • Because of the banking crisis, Banks reduced lending, there was a fall in investment. People lost savings and so reduced consumer spending. The impact on economic confidence was disastrous.
  • Also there is no laws to determine the  bank capital bases, reverse and loan rates. Because of that investors  did not have enough information about the company which they are get shares.

Deflation

With falling output, prices began to fall. Deflation created additional problems.

  • It increased the difficulty of paying off debts taken out during 1920s
  • Falling prices, encouraged people to hoard cash rather than spend (Keynes called this the paradox of thrift)
  • Increased real wage unemployment (workers reluctant to accept nominal wage cuts, caused real wages to rise creating additional unemployment)

Unemployment and Negative Multiplier Effect.

As banks went bankrupt, consumer spending and investment fell dramatically. Output fell, unemployment rose causing a negative multiplier effect. In the 1930s, the unemployment received little relief beyond the soup kitchen. Therefore, the unemployed dramatically reduced their spending.

Global Downturn.

America had lent substantial amounts to Europe and UK, to help rebuild after first world war. Therefore, there was a strong link between the US economy and the rest of the world. The US downturn soon spread to the rest of the world as America called in loans, Europe couldn’t afford to pay back. This global recession was exacerbated by imposing new tariffs such as Smoot-Hawley which restricted trade further.

Deal Programs

  1. CCC – Civilian Conservation Corps

The Civilian Conservation Corps was created in 1933 by Franklin D. Roosevelt to combat unemployment. This work relief program had the desired effect and provided jobs for many Americans during the Great Depression. The CCC was responsible for building many public works and created structures and trails in parks across the nation.

  1. CWA – Civil Works Administration

The Civil Works Administration was created in 1933 to create jobs for the unemployed. Its focus on high paying jobs in the construction arena resulted in a much greater expense to the federal government than originally anticipated. The CWA ended in 1934 in large part due to opposition to its cost.

  1. FHA – Federal Housing Administration

The Federal Housing Administration was a government agency created to combat the housing crisis of the Great Depression. The large number of unemployed workers combined with the banking crisis created a situation in which banks recalled loans. The FHA was designed to regulate mortgages and housing conditions.

  1. FSA – Federal Security Agency

The Federal Security Agency established in 1939 had the responsibility for several important government entities. Until it was abolished in 1953, it administered social security, federal education funding, and food and drug safety.

  1. HOLC – Home Owner’s Loan Corporation

The Home Owner’s Loan Corporation was created in 1933 to assist in the refinancing of homes. The housing crisis created a great many foreclosures, and Franklin Roosevelt hoped this new agency would stem the tide. In fact, between 1933 and 1935 one million people received long term loans through the agency that saved their homes from foreclosure.

  1. NRA – National Recovery Act

The National Recovery Act was designed to bring the interests of working class Americans and business together. Through hearings and government intervention the hope was to balance the needs of all involved in the economy. However, the NRA was declared unconstitutional in the landmark Supreme Court case Schechter Poultry Corp. v. US. The Supreme Court ruled that the NRA violated the separation of powers.

  1. PWA – Public Works Administration

The Public Works Administration was a program created to provide economic stimulus and jobs during the Great Depression. The PWA was designed to create public works and continued until the US ramped up wartime production for World War II. It ended in 1941.

  1. SSA – Social Security Act

The Social Security Act was designed to combat the widespread poverty among senior citizens. The government program provided income to retired wage earners. The program has become one of the most popular government programs and is funded by current wage earners and their employers. However, in recent years concerns have arisen about the viability of continuing to fund the program as the Baby Boom generation reaches retirement age.

  1. TVA – Tennessee Valley Authority

The Tennessee Valley Authority was established in 1933 to develop the economy in the Tennessee Valley region which had been hit extremely hard by the Great Depression. The TVA was and is a federally owned corporation that works in this region to this day. It is the largest public provider of electricity in the United States.

  1. WPA – Works Progress Administration

The Works Progress Administration was created in 1935. As the largest New Deal Agency, the WPA impacted millions of Americans. It provided jobs across the nation. Because of it, numerous roads, buildings, and other projects were completed. It was renamed the Works Projects Administration in 1939. It officially ended in 1943.

 

Rapora ulaşmak için tıklayınız.

EMSAL (KAKS)

EMSAL (KAKS)

Planlı alanlar Tip İmar yönetmeliğinin 16. Maddesinin 4. Bendinde Emsale ait tanımlama yapılmıştır. Bu yönetmeliğin genel hükümler, tanımlar ve ruhsata ilişkin hükümleri planlarla ve idarece çıkarılacak hükümlerin üzerinde olmasından dolayı planlarla ve idarece değiştirilemez. (Madde 2)  Bu nedenle emsal tanımı ve emsal hesabı ülke genelinde bu yönetmelik kapsamında hesaplanmasını zorunlu kılmaktadır.

Madde 16
4. (Değişik:RG-8/9/2013-28759) Kat alanı kat sayısı (KAKS) (Emsal): Yapının katlar alanı toplamının imar parseli alanına oranından elde edilen sayıdır.

Bu tanımdan anlamamız gereken konu parsel üzerinde yapabileceğimiz toplam inşaat alanın parsele oranını ifade etmektedir. Kısaca özetlersek arsa alanımız ile Emsali (Kaks) çarparak parsel üzerine yapabileceğiz inşaat hakkımızı bulabiliriz. Örneğin,  1000 m² arsa için Emsal:2.00 ise bunu anlamı 1.000 m² x 2.00 = 2.000 m² inşaat hakkımız olduğu anlamına gelmektedir.

Detaylandırmak isetersek TAKS (Taban Alanı Kat Sayısı) ile kat adedini çarparak Emsali (KAKS) bulabiliriz.

Örneğin 1000 m² parsel aranı üzerinde Taks (Taban Alanı Katsayısı): 0.40 ve 5 kat imar haklarına sahip bir arsamız olsun bu parselin Emsali: 0.40 x 5 =2.00 olduğu anlamına gelmektedir.Yani 1000m² arasımız zeminde 1000m² x 0.40 =400 m² taban alanı toplamda ise 400 m² x 5 =2000 m² inşaat alanına sahip bir bina yapma hakkına sahip olduğu anlamına geliyor.

Emsal (KAKS) = TAKS X Kat Adedi

 Fakat Planlı Alanlar Tip İmar Yönetmeliğinin aynı maddesinde (16. Maddenin 4. Bendi) Emsale dahil olmayan alan kullanımlarını sıralamıştır. Bu alanlar Emsal (KAKS) ‘e dahil olmadığından bizim yukarıda yaptığımız hesaplamarda Emsal alanı olarak bulduğumuz alana dahil değildir. Dolayısıyla parsel sahibine fazladan inşaat alanı kazandırmaktadır. Dahada açık şekilde ifade etmemiz gerekirse yukarıdaki örnekte bulduğumuz 2.000 m² + (Emsal Dışı Alanlar) şeklinde inşaat yapma hakkına sahip olduğumuz anlamına gelmektedir.

Yönetmelikte belirtilen Emsal (KAKS) dahil edilmeyen alanlar;

Teras çatılar ve çatı bahçeleri, kanopiler, giriş saçakları, tabii veya tesviye zemine oturan avlular, sundurma gibi üstü hafif malzeme ile örtülü bir veya birden fazla kenarı açık olan ve her bir bağımsız bölümle irtibatlı zemin terasları, binaya bitişik veya ayrık bir veya birden fazla kenarı açık olan arkatlar, bahçe ve istinat duvarları,

 

Üstü sökülür-takılır hafif malzeme ile kenarları rüzgar kesici cam panellerle kapatılmış olsa dahi açık oturma yerleri, çocuk oyun alanları, en az bir tarafı açık sundurmalar, açık büfeler, açık yüzme havuzları, atlama kuleleri, pergolalar ve kameriyeler,

 

Bu Yönetmelikte öngörülen asgari sayıda her bir kapıcı dairesinin 75 m2’si, bekçi odalarının ve kontrol kulübelerinin toplam 9 m2’si,

 

Mescit, bina için gerekli minimum sığınak alanının %30 fazlasını geçmeyen sığınak alanı,

 

Ticari amaç içermeyen kreş ve çocuk bakım ünitelerinin toplam katlar alanının %5’ini aşmamak koşuluyla 750 m²’yi geçmeyen kısımları,

Yapının kendi ihtiyacı için bodrum katta yapılan otoparklar ile konut, resmi kurumlar, eğitim ve sağlık tesisleri, ibadet yerleri, otel, opera, yurt, müze, kütüphane hariç umumi binaların teraslarında yapılan açık otoparklar,

 

Ortak alan olarak ayrılan; asansör boşlukları, yangın merdiveni, yangın güvenlik hollerinin 6 m2’si ve ışıklıklar,

 

Çöp, atık ayrıştırma, hava, tesisat şaft ve bacaları,

 

Yapı yüksekliği 60.50 m.’den fazla olan binalar ile özelliği gereği tesisat katı oluşturulması zorunlu binalarda emsale dahil katlar alanının % 3’ünü geçmemek koşuluyla sadece tesisat için oluşturulan tesisat katları,

 

Bina veya tesise ait olan; kazan dairesi, teshin merkezi, arıtma tesisi, su sarnıcı, gri su toplama havuzu, yakıt ve su depoları, silolar, trafolar, jeneratör, kojenerasyon ünitesi, eşanjör ve hidrofor bölümleri,

 

Bütün cepheleri tamamen toprağın altında ve yapı yaklaşma sınırı içinde kalan katlarda yer alan ve tek başına bağımsız bölüm oluşturmayan veya bir bağımsız bölümün eklentisi veya parçası olmayan ve toplamda katlar alanının % 10’unu ve 3000 m2’yi aşmayacak şekilde düzenlenen; ortak alan niteliğindeki jimnastik salonu, oyun ve hobi odaları, yüzme havuzu, sauna gibi sosyal tesis ve spor birimleri,

 

Bütün cepheleri tamamen tabii zeminin altında kalan bodrum katlarda yer alan ve toplamda katlar alanının %5’ini aşmayan ortak alan depolar,

 

Daha sonradan hafredilerek açığa çıkması mümkün bulunmayan bina cephelerinde ilave kat görünümüne neden olmayan bütün cepheleri tamamen tabii zeminin altında kalan bodrum katlarda yer alan ve tek başına bağımsız bölüm oluşturmayan; konut kullanımlı bağımsız bölümün bağımsız bölüm bürüt alanının %20’sini, ticari kullanımlı bağımsız bölümün bağımsız bölüm bürüt alanını aşmayan depo amaçlı eklentiler,

 

Bulunduğu katın emsale dahil alanının toplam %20’sini geçmemek koşuluyla; sökülür-takılır-katlanır cam panellerle kapatılmış olanlar dâhil olmak üzere balkonlar, açık çıkmalar ile kat bahçe ve terasları, kış bahçeleri, iç bahçeler, tesisat alanı, yangın güvenlik koridoru, bina giriş holleri, kat holleri, asansör önü sahanlıkları, kat ve ara sahanlıkları dahil açık veya kapalı merdivenler,

 

dahil edilmez. Özel çevre koruma alanları, kıyı alanları, sit alanları ve orman alanları gibi korunan alanlara ilişkin planlarda emsal, TAKS, yapı yaklaşma mesafeleri ve kat adedi belirlenmeden uygulama yapılamaz, ruhsat düzenlenemez. Korunan alanlar hariç olmak üzere uygulama imar planında yapılaşma koşulları belirlenmeyen; nüfusu 5.000’in altında kalan yerleşmelerde TAKS:0.20’yi, kat adedi 2’yi, nüfusu 5.000’den fazla 30.000’ den az olan yerleşmelerde TAKS:0.25’i, kat adedi 3’ü, nüfusu 30.000’den fazla 50.000’den az olan yerleşmelerde TAKS:0.30’u, kat adedi 4’ü, nüfusu 50.000’den fazla olan yerleşmelerde ise TAKS:0.40’ı, kat adedi 5’i geçemez. İmar planında TAKS ve KAKS verilmeyen parsellerde 2/8/2013 tarihinden sonra kat adedinin artırılmasına yönelik yapılacak plan değişikliklerinde bu alanlarda TAKS ve KAKS’ın verilmesi zorunludur, aksi halde bu parsellerde yapı ruhsatı düzenlenemez. Tamamen toprağın altında kalması nedeniyle; bu bent uyarınca emsal hesabına konu edilmeyen mekanlar ile kat adedine konu edilmeyen katların hiç bir cephesi kazı ve tesviye yapılarak açığa çıkarılamaz. Emsal hesabına dahil edilmeyen mekanlar proje değişikliği ile imar planındaki veya yönetmelikle belirlenen emsal değerini aşacak şekilde emsal hesabına konu alan haline getirilemez, müstakil bağımsız bölüm haline dönüştürülemez ve kat mülkiyeti tesis edilemez. Bu alt bentte belirtilen emsal hesabı yapılırken, bağımsız bölüm bürüt alan tespit esaslarına göre işlem yapılır, ancak, bu hesaba bu bent uyarınca katlar alanına dahil edilmeyen alanlar, boşluklar dahil edilmez.

—-

 

Emsal hesabına dahil olmayan alanları kısaca kat planı üzerinde özetleyecek olursak aşağıdaki resimde emsale konu alanlar açık kahve ile (Yönetmeliğin 16/4. maddesinde yer alan kullanımlardan katta bulunanlarının katın inşaat alanından düşülmesi ile bulunur), Emsale konu alanların %20 sini geçmeyecek şekilde emsal harici alanlar  yeşil ile emsal harici alanlar mavi ile gösterilmiştir.

Emsal (KAKS)

İmar Çapı (İmar Durum Belgesi)

İmar Çapı (İmar Durum Belgesi):

Genel olarak parselin imar mevzuatına ve imar planlarına gore yapılaşma haklarını gösteren resmi bir belge olup kimi kurumlarda imar Çapı, bazılarında ise imar durum belgesi adı ile anılmaktadır. İlgili idarece hazırlanması gereken bu belge; konu parselde imar planı ve yönetmelikler uygun yapılabilecek kat adedini, bina yüksekliğini, bina derinliğini, ön, arka vey an bahçe çekme mesafelerini, yapı nizamını, taban alanı kat sayısı (Taks), kat alanı kat sayısını (Kaks) rakan ve kroki ile gösterilmektedir. Bunlara ek olarak parselin başka yasa ve yönetmelikler yönünden kısıtlılığı olup olmadığı böyle bir kısıtlılık bulunması halinde alınması gereken izinler belirtilmektedir.

İmar Çapı (imar durum belgesi) önceki yasa ve yönetmeliklere göre bir yıl geçerli olduğu belirtilmiş ve ona göre işlemyapılmaktaydı. Fakat şuan yürürlükte bulunan imar kanunu ve planlı alanlar imar yönetmeliğinde imar çaplarının ne kadar süre geçerli olacağına dair bir hüküm bulunmamaktadır. Bu nedenle benim şahsi kanaatim imar çaplarının konu parselin bulunduğu bölgede imar planı değişikliği olana kadar geçerliliğini sürdürmesi gerektiğidir.

Ayrıca planlı alanlar tip imar yönetmeliğin MADDE 57 (Değişik fıkra:RG-8/9/2013-28759) ‘de imar çapı ilgili idare başvuru tarihinden itibaren iki iş günü içerisinde ilgilisine verilmesi gerektiği belirtilmiş olup bu süre içerisinde verilememesi durumunda gerekçesinin, başvuru sahibine aynı süreler içinde yazılı olarak bildirilmesinin zorunlu olduğu belirtilmiştir.

Taban Alanı Kat Sayısı (TAKS)

Taban Alanı Kat Sayısı (TAKS) Planlı Alanlar Tip imar yönetmeliğinde açık şekilde tanımlanmıştır. Yönetmeiliğin genel hükümler, tanımlar ve ruhsata ilişkin hükümler kısmı plan ve idarece çıkarılacak olan yönetmeliklerle  değiştirilememektedir. Bu nedenle Taks (Taban Alanı Kat Sayısı) her koşulda yönetmelikte belirtildiği şekliyle hesaplanmalıdır.

Planlı alanlar tip imar yönetmeliğinde yer alan tanım;

Madde 16 / 2. (Değişik:RG-8/9/2013-28759) Taban alanı kat sayısı (TAKS): Taban alanının imar parseli alanına oranıdır. Taban alanı kat sayısı, arazi eğimi nedeniyle tabii veya tesviye edilmiş zeminin üzerinde kalan tüm bodrum katlar ile zemin kat izdüşümü birlikte değerlendirilerek hesaplanır.

“Arazi eğimi nedeniyle tabii veya tesviye edilmiş zeminin üzerinde kalan tüm bodrum katlar ile zemin kat izdüşümüdür.”

Bu cümleden yola çıkarak TAKS ‘ı şematikleştirecek olursak;

Aşağıdaki zemin ve bodrum kat planlarında yeşil kısımların alanlarının toplamı TAKS (Taban Alanı Kat Sayısı) hesaplarken kullanacağımız İnşaat taban alanını ifade etmektedir. Kat Planlarındaki şekil alanları kesittede açık şekilde görmekteyiz. Yeşil kısımların alanları toplamı İnşaat taban alanını vermektedir.

Taks(Taban Alanı Kat sayısı) 1

 

Örneğin yukarıdaki çizimlerde yeşil kısım 400 m² ve parsel büyüklüğümüzde 1.000 m² ise TAKS (Taban Alanı Kat Sayısı ) : 1.000 m² / 400 m² =0.40 olduğu anlamı taşımaktadır.

FAKAT, Dikkat edilmesi gereken bir kaç kısım bulunmaktadır;

1-  Yukarıdaki mimari çizimlerde tarama ile gösterilen “Kapalı Çıkmalar” TAKS (Taban Alanı Kat Sayısı) hesabında inşaat taban alanına dahil değildir.

2- Tamamen toprağın altında kalan kısımın bina izdüşümü dışına taşan kısım TAKS (Taban Alanı Kat Sayısı) hesabına dahil edilmez. Örneğin aşağıdaki şekilde kırmızı ile kutu içerisine alınmış kısmı hesaplamalarımıza dahil etmemiz gerekmektedir.

Taks(Taban Alanı Kat sayısı)